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ABSTRACT 

Linear, equilibrium chromatography on a finite column has been re-examined using the rate model. 
Unlike most previous descriptions, the boundary condition at the column origin is treated as reflective. The 
development of the band profile on the column behaves in a physically and mathematically reasonable 
fashion. In this regard, long-standing disagreements on this fundamental issue are finally eliminated. For 
almost all practical situations, the use of Gaussian profiles for theoretical descriptions of on-column 
equilibrium chromatography appears valid. 

INTRODUCTION 

Developments in theories, applications and instrumentation of elution chroma- 
tography continue unabated. The interdependence of these three attributes was well 
illustrated by Snyder and Kirkland [l]. Among the many theoretical approaches are 
efforts to extract physico-chemical parameters from experimental elution curves [2-71. 
A requirement in these efforts is that the relationship between the peak profile and the 
various parameters be both accurate and well understood. Along these lines, we have 
been re-examining [8,9] some of the most elementary aspects of column chromato- 
graphy in order to explore the effects of approximations that have been routinely 
imposed, over the years, in modeling the chromatographic process. Our long-term 
goals are either to justify the use of these approximations or to alter theory 
accordingly. 

We begin by restricting our considerations to only the hypothetical case of linear, 
two-phase equilibrium chromatography. This is usually the starting point for more 
complete theories that incorporate non-linearities and non-equilibrium considera- 
tions. For our current objectives, therefore, we assume fast mass transfer, that the 
density of the mobile phase remains constant over the length of the column, that the 
sorption isotherm is linear and that the velocity of the mobile phase is well represented 
by its constant average. Under these simplifying conditions, the chromatographic 
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process, what Snyder [lo] termed column development, is modeled according to the 
partial differential equation of diffusion with forward drift [11,12]: 
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where D is an effective dispersion constant of the solute in the mobile phase, u is the 
velocity of the mobile phase in the axial (z) direction, E is the fraction void volume and 
kl and k2 are the rate constants for transfer between phases. For a linear isotherm and 
fast interphase kinetics, these equations reduce to the rate expression for linear, 
equilibrium chromatography: 
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where U, = u/(1 + k’), D, = D/(1 + k’) and k’ is the capacity factor or equilibrium 
mass distribution ratio. This paper focuses entirely on the solution to the latter 
hypothetical system and on its relevance to chromatographic theory and, to a lesser 
extent, practice. 

Traditionally, there has been more than one scheme for solving eqn. 1. By and 
large, the reasons for the choices have been a combination of mathematical 
convenience and justifiability under certain operating conditions. A very general 
discussion, not restricted to chromatographic systems, has been developed by Kreft 
and Zuber [ 131. Some schemes involve solving for the on-column profile c(z,t) and 
others for the elution profile P(t). Further, the boundary conditions employed in these 
situations have been one of two types: the infinite column in which - cc -C z < + cc 
and the semi-infinite column in which 0 < z < + co. The true column is neither of 
these, but rather is finite, a fact that can subtly influence the form of the solution to eqn. 
1. The present discussion begins with a brief description of the conventional models: 
infinite, semi-infinite and finite. 

The infinite column 
Grubner [14], Grushka [15], KulSera [16] and Jiinsson [17], among others, have 

treated the column as if it were infinite. The initial conditions are such that at time zero, 
the sample is only at the z-origin. The column extends without limit in the positive and 
negative directions. Eqn. 1 can then be solved and gives exactly the Gaussian curve for 
the on-column profile at any fixed time t > 0, regardless of the magnitude of either the 
diffusion constant or the mobile phase velocity. The solution can be expressed as the 
fractional concentration per unit length at time t and axial position z as 

CW) = J&-& -.exp[ _ (zii;f)2] (2) 
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Fig. 1. On-column concentration probability profile for the infinite column. The sample is initially at z = 0 
at time zero in which -a, < z < co, u, = 0.01 (in the positive z-direction), D, = 0.0002. The figure has not 
been extended into the negative column coordinate region. Time is in units of D&f. 

An example set of curves is shown in Fig. 1. K&era [ 161 assigned the elution profile to 
be the function c&t), where L is the fixed column length. Kreft and Zuber [ 131 referred 
to the use of c(L,t) as “detection in resident fluid”. 

In contrast, Jiinsson [17] argued that the elution profile is more appropriately 
obtained by what Kreft and Zuber termed “detection in flux”, having units of 
fractional concentration per unit time: 
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As a consequence, K&era and Jiinsson obtained different predictions for elution 
chromatograms which we shall distinguish by subscripts K and J, respectively. Jijnsson 
presented an analytical expression for the detection in flux elution curve: 

P,(t) = 3 + L ( > I-enp[ - (LT-;l)2] 
2 2t JC 
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For comparison, KuEera’s detection in resident fluid elution curve may be written as 

PK(t) = c(L,z) = &. exp[ - (LL[y)2] (length.-‘) 

Jonnson noted the apparent inappropriateness of the dimensionality of&(t) for an 
elution profile. Kreft and Zuber’s more thorough consideration shows that normaliza- 
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tion taking into account the dimensional difference between flux and concentration 
accounts for the seeming conflict. 

The semi-infinite column 
Kubin [18] and Yamaoka and Nakagawa [ 191 used a semi-infinite column in 

their derivations. The boundary conditions in this case correspond to a column which 
is infinite only in the positive z-direction. At time zero, the concentration of solute is 
zero everywhere but at the origin. At the origin, the concentration is unity at time zero 
and zero thereafter; that is, c(O,t) = s(t), the Kronecker delta. This boundary 
condition produces a profile solution expressed as the fractional concentration per unit 
time at time t and axial position z. Jiinsson gave the following expression for the 
on-column profile in this case: 

although as quoted, c(z,t) has not been correctly normalized for 0 6 z < co. Fig. 
2 shows normalized (semi-infinite) c(z,t) for a set of conditions comparable to those in 
Fig. 1. At constant time t > 0, the on-column profile in eqn. 3 is non-Gaussian. This is 
in contrast to the profile on the fully infinite column, eqn. 2. Jiinsson pointed out that 
the S(t) boundary condition for the semi-infinite column gives the unrealistic result 
that the profile develops an instantaneous node at the origin when the separation 
begins as Fig. 2 shows. This happens even in the limit of zero mobile phase velocity, an 
extreme condition which should reproduce the on-column profile at the diffusion-only 
limit: broadening downstream from the origin. 

Fig. 2. On-column concentration probability profile for the semi-infinite column. Conditions as in Fig. 1, 
exceptOIz<co. 
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The finite column 
The aforementioned contradictory solutions purposely avoid any end effect by 

invoking a column that is infinite in the + z direction. One should bear in mind that the 
end effect has also been neglected in theories that do incorporate mass transfer and 
other non-equilibrium effects. No chromatographic theory based on the rate equation 
has invoked boundary conditions associated with a truly finite column. However, in 
another study, we did address the finite column using the plate model of chromato- 
graphy in a way that is valid at high capacity factors [9]. In addition, for a column 
semi-infinite in the negative direction, the influence of just the end effect on statistical 
moments in equilibrium chromatography was the subject of an earlier report [8]. 

THEORY 

The boundary condition we invoke at the column origin differs from that used by 
Kubin and others that was described above, whether for equilibrium or non-equilib- 
rium systems. In recognition that a solute molcule at z = 0 cannot retreat backward 
from that point to z < 0 since the column doesnot exist there, we have what is referred 
to as a reflecting barrier at the origin [20]. In the mathematics of heat-transfer studies, 
this is equivalent to an insulation boundary condition [21,22]. In fact, Sommerfeld 
used, as an heuristic illustration of reflection, diffusion in a cylindrical column. At the 
bottom of the column at time zero is a small amount of concentrated CuS04 solution 
and above that is a layer of pure water extending to infinite height and into which the 
colored solution diffuses [22]. The phenomenon is easily demonstrated and also easily 
pictured mentally. This reflecting barrier boundary condition in chromatographic 
terms may be written as [20,23] 

Cox and Miller [20], following Smoluchowski [24] and Sommerfeld [22], solved the 
diffusion equation with drift, that is, eqn. 1 with a reflecting barrier at the origin. The 
solution corresponds to the concentration profile of the solute as a function of position 
and time while the solute is on a semi-infinite column. This, in turn, approximates the 
behavior of a band that has been appropriately dealt with at the origin and that has not 
yet approached the elution point L where the end effect applies. In the early stages of 
chromatography then, the on-column profile is well represented by Cox and Miller’s 
expression (after correction for some typographical errors): 

c(z,t) = &{exp[-(z-&$2]}-$[l -@rs)]exPtz) 
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Fig. 3. ‘On-column concentration probability profile for the semi-infinite column with a reflection boundary 
condition at the origin. Other conditions as in Figs. 1 and 2. 

where Q(x) is the standard normal integral: 

Fig. 4. Comparison of the on-column profiles at t = 5.0 D./us, a representative short time for the infinite 
(solid line), semi-infinite (dashed line) and semi-infinite with reflection (dotted line) systems in Figs. l-3. 
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Fig. 5. Comparison of the on-column profiles at t = 1000.0 De/u:, a representative long time for the three 
sets of boundary conditions as in Fig. 4. The dotted line cannot be easily distinguished from the solid line 
(infinite column result). 

Eqn. 4 is identical with Kreft and Zuber’s equation for a semi-infinite bed with 
injection in flux and detection in resident fluid. Fig. 3 illustrates the effect of 
introducing reflection at the origin. Fig. 4 compares the various calculated on-column 
profiles at short times. Note that the profile with reflection at the origin “leads” the 
peak from the infinite model profile. For long times, all three profiles converge, as 
shown in Fig. 5, becoming indistinguishable from a common Gaussian profile. This 
can be verified mathematically. For long chromatography times, we can use an 
approximation for the second term on the right in eqn. 4. From Abramowitz and 
Stegun [25], the asymptotic expansion for x > 0 

l-@(x)+(1-++...) 

enables us to show that 
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Exploring eqn. 4 graphically as in Fig. 5 demonstrates that for long times, z - u,t is 

nearly normally distributed about zero with a standard deviation that is ca. @. 
In that case, the first-order term in the series expansion is negligible when 

,/%&,r c< 1. Consequently, eqn. 4 reduces to eqn. 2, the Gaussian distribution, at 
times t >> 2D&. 

At least as far as equilibrium chromatography is concerned, we see that behavior 
at the column origin ultimately has a negligible effect on band development provided 
that we are not dealing with very short columns or unusually fast effective diffusion 
relative to peak migration rate. 

DISCUSSION 

With regard to one of the two column boundaries, the origin, Jiinsson had 
dismissed the semi-infinite model of Kubin as physically unrealistic. The justification 
was that it gave a node in the on-column profile at the origin at all times other than 
t = 0, as can be seen in Fig. 2. However, the infinite models are equally unrealistic 
because they allow diffusion of solute into a non-existent part of the column, z < 0. It 
is apparent, though, that in the high velocity limit, these conflicts lose their impact. The 
awkwardness of both of these physical situations is completely vitiated when it is 
recognized that the boundary condition at the column origin corresponds to 
a reflection, that is, the probability flux through the origin is zero. At the very least, it is 
gratifying that as a direct consequence of using a reflection at the origin of the column, 
the on-column profile neither extends to negative column coordinates nor bears a node 
at the origin. 

In a recent note [8], we drew attention to the end effect associated with elution at 
the column terminus. This involves another boundary condition necessary for solving 
the differential eqn. 1 under physically appropriate restraints. That is, the realistic 
cessation of diffusion and drift that occurs at the column terminus results in an elution 
profile that does not generally correspond to previous versions, although it does under 
certain limiting conditions. In that work, we had derived statistical moments of the 
equilibrium chromatogram on a column in which - cc < z I L. The end effect was 
mathematically determined by incorporating an absorbtion sink at z = L. In this way, 
solute reaching the elution coordinate is removed and cannot reappear on the column 
via dispersive effects. The drawback with those results might have been that the 
column was viewed as semi-infinite, extending towards - cc. However, we have 
demonstrated in this work that, except in highly unusual circumstances, the effect of 
this oversight on the developing profile and consequently on the elution profile should 
be non-essential. The technique for addressing the end effect in the above reference 
should be valid. 

The developments presented here seem very satisfactory when applied to linear 
equilibrium chromatography. It is our hope next to explore what changes, if any, arise 
when using these boundary conditions where kinetic effects have also been included. 
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